
~ )  Pergamon 
Int. J. Heat Mass Transfer. Vol. 40, No. 7, pp. 1559-1565, 1997 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0017-9310/97 $17.00+0.00 

PII :  S0017-9310(96)00226-8 

A model for thermocouple sensitivity during 
microwave heating 

W. E. OLMSTEAD 
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, 

IL 60208, U.S.A. 

and 

M. E. BRODWlN 
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, 

IL 60208, U.S.A. 

(Received 10 November 1995 and in final form 14 June 1996) 

Abstraet--A mathematical model is proposed to understand the sensitivity of internal temperature measure- 
ments recorded by thermocouples during microwave heating experiments. In situations of internal heating, 
such as when microwaves are used, the portion of the metal thermocouple guard protruding from the 
material body remains relatively cool and represents an effective path for thermal loss. This suggests that 
the tempera'rare recorded at the tip of the embedded portion of the thermocouple may be strongly dependent 
on the abiliLy of the metal guard to transfer heat away from this tip. The analytical results derived here 

support this thesis. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The mathematical problem to be investigated below 
is proposed as a model to assist in understanding some 
temperature anomalies which have been noted during 
microwave heating experiments (see for example [1]). 
These anomalies have fostered the claim that the 
microwave heatirLg of certain materials yields an 
enhanced effect, wherein chemical changes occur at 
ostensibly lower temperatures than is recorded during 
kiln heating. The nature of this enhancement has been 
questioned in ref. [2]. It is suggested that the tem- 
perature discrepancies might simply be a mis- 
interpretation of t]ae thermocouple measurements rec- 
orded during microwave heating. The results derived 
here from the theoretical analysis of our proposed 
model support the experimental evidence of ref. [2]. 

The goal of ref. [2] was to demonstrate exper- 
imentally that internal temperature measurements are 
very sensitive to the thermocouple configuration used 
during the microw ave heating of certain ceramic speci- 
mens. The proposed thesis is that the metal guard of 
the embedded th,~rmocouple, which is needed as a 
shield from the microwaves, provides a very effective 
conductor of heat away from the internally heated 
specimen. In a microwave oven, that portion of the 
thermocouple which protrudes from the specimen 
remains relatively cool as compared with the uniform 
heating achieved in a kiln. The results of ref. [2] show 
that the recorded temperatures for cement mortar 

were dramatically decreased when the thickness of the 
metal guard was increased. 

Here we consider a two-dimensional model as a 
simplified representation of a thermocouple embed- 
ded in a slab of internally heated material. While this 
model is only a caricature of the actual physical 
system, it will serve to demonstrate the sensitive 
relationship between the end-temperature and the 
thickness of a high conductivity guard embedded in a 
hot slab of relatively low conductivity material. 

2. MATHEMATICAL MODEL 

Figure 1 provides a sketch of the thermocouple 
guard inserted into a body of heated material. The 
metal guard is shown as a closed end tube partially 
embedded in the internally heated material. The ther- 
mocouple, not shown, is in physical contact with the 
tip of the guard, and extends upward to a shielded 
recording apparatus. It is assumed that the ther- 
mocouple itself does not provide significant thermal 
loss. Figure 2 depicts the relevant portion of the full 
sketch which has been geometrically simplified for 
purposes of the mathematical model. In Fig. 2, both 
the thermocouple guard and the body are represented 
as rectangular strips which are joined along a common 
interface representing the embedded portion of the 
thermocouple. 

Referring to the two-dimensional model of Fig. 2, 
we consider a steady state condition in which the 
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NOMENCLATURE 

A, B parameter groups 
y Green's function for thermocouple 

guard domain 
G Green's function for body domain 
h thermocouple guard penetration 

depth 
k I thermocouple guard thermal 

conductivity 
k2 body thermal conductivity 
l thermocouple guard wall thickness 
L body dimension 
Nn normalization constants 
q nondimensional heating parameter 
Q microwave heating parameter 
To ambient temperature 
7"1 thermocouple guard temperature 
/'2 body temperature 

u nondimensional thermocouple guard 
temperature 

U nondimensional body temperature 
x, y nondimensional coordinates for 

thermocouple guard domain 
X, Y rectangular coordinates. 

Greek symbols 
~, convection coefficient for 

thermocouple guard 
~2 convection coefficient for body 
~tl, ct2 parameter groups 
fl parameter group 
2, eigenvalues 
# parameter group 
¢, r/ nondimensional coordinates for body 

domain. 

l 

P1 

I 

Fig. 1. Schematic view of thermocouple and heated body. 
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Fig. 2. Simplified geometry of thermocouple and heated body. 

temperature T~ in the thermocouple guard of thick- 
ness l satisfies 

~2 TI ~2 T~ 
ax  ~ (.~', Y) + ~ (x, r3 = 0, 

0 < X < / ,  Y > 0  (1) 

t3Tl(0, Y ) = 0 ,  Y>I0 (2) 
dX 

t3T~ 
k~-~-ff(l,Y)= -(q[r~(l,Y)-To], Y> h (3) 

g3TI (x ,  0 ) = 0 ,  TI(X, oo)= To, O<..¥<.L (4) 
dY 

The temperature T2 in the microwave heated body 
with a characteristic dimension L is required to satisfy 

I t~ 2 T2 I,x," " -0~-i92 T2 y) ]  
k2LTX-; r3+ ix, 

= - Q ,  l < X < l + L ,  0 < Y < h  (5) 

dT2 L 

=-a2[T2(I+L,Y)-Tol,  0<~ Y<~h (6) 

OT2 gT2 
-ff~ (X, 0) --- 0, -~(-~ (X, h) --- 0, t<~X<~t+L. (7) 

Along the common interface, the continuity of tem- 
perature and thermal flux require that 

T~ (l, Y) = T2 (l, Y), 

t3T1 k aT2 
k , T £ ( t , Y ) =  2-~( t ,Y) ,  O<<. r<~h. (8) 

In this dimensional form of the model, the thermal 
conductivities for the thermocouple and body are k~ 
and k2, respectively, while the convection coefficients 
are ctl and ~t2, respectively. The internal heating by the 
microwaves is taken to be a constant Q. The relatively 
cool ambient temperature within the microwave oven 
is denoted by To. 

The boundary conditions (2)-(4) and (6)-(7) reflect 
some simplifying assumptions implicit in the model. 
It is assumed that no heat is lost from the metal guard 
to the interior of the thermocouple. Also, no heat 
from the body enters the small tip of the guard at 
Y = 0. It is further specified that the body is insulated 
along its exposed surface at Y = h. Moreover, it is 
assumed that any vertical heat transfer within the 
body below Y = 0 can be neglected so as to justify a 
no flux condition along this surface. Convection loss 
is allowed (i) along the exposed portion of the metal 
guard, X = 1, Y > h ; (ii) at the non-insulated surface 
of the body, X =  l+h, 0 <~ Y<~ h. In essence, the 
model emphasizes the horizontal conduction of heat 
in the body to either its exterior surface at X = I+L, 
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where it can be convected away, or to its interface with 
the metal guard at X = l, where it is then conducted 
vertically upward along the guard toward its remote 
end. 

To put (1)-(8) into a more suitable form for analy- 
sis, we introduce the nondimensional variables 

x =  X/l, y =  Y/l, 

u(x,y) = [TI(X, IO-To]/To ~ = (X- I ) /L ,  

t 1 = Y/L, U(4,rl) = [T2(X, Y)-To]/To (9) 

and parameters 

~] = ~ll/h, 0~2 = ~2L/k2, 

fl = k2t/k,L, q = aL2/k, To. (10) 

Then equations (1)-(8) become 

f~2 (x,y ) O2u + - - ~ ( x , y ) = 0 ,  0 < x < l ,  y > 0  (11) 

Ou 
Ox (O,y)= O, y~>O (12) 

Ou 
~xx(l,y) = --cqu(1,y), y > h/l (13) 

~ (x,O)=O, u(x, oo)=O, O~<x~<l (14) 

02U 02U 
(4,~)+ ~-~ (¢,~) 

= - q ,  0 < 4 < 1 ,  O < r l < h / L  (15) 

~ (1 ,~ / )  = -u2U(1,r/), <~ q <~ h/L (16) 0 

~ ( 4 , 0 ) = 0 ,  ~ ( 4 , h / L ) = O ,  o-..<4-..<1 (17) 

~u OU 
u(l,y) = U(O,r/), ~x( l ,y)  = f l~-(0 ,q) ,  (18) 

O <<. y <~ h/l, O <~ ~l <~ h/L. 

Our goal is to determine information about the tem- 
perature at the tip of the thermocouple from the solu- 
tion of equations (11)-(18). 

3. SOLUTION FOR THE TIP TEMPERATURE 

The overall approach to the solution of equations 
(11)-(18) will be to first obtain separate rep- 
resentations for the temperature field in the metal 
guard and in the internally heated body, using Green's 
functions. Then, the matching conditions, equation 
(18), at the interface will be applied. This will then 
lead to the determination of  the temperature at the tip 
of the thermocouple. 

An integral representation of u(x, y) which satisfies 
equations (11)-(14) is given by 

(19) 

where g(x, ylxo, Yo) is the solution of the Green's func- 
tion problem 
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= - 3 ( X - X o ) 6 ( y - y o ) ,  0 < x < l ,  y > 0  (20) 

~xx(O, ylxo,Yo) = 0, y > 0 (21) 

xx(1,y[xo,Yo) = -oqg(1,yrxo,Yo), y >t 0 (22) 

~ ( x ,  0[xo,Yo) = 0, 

u(x, ~[xo,Yo) = 0, 0 ~< x ~ 1. (23) 

The solution of equations (20)-(23) can be determined 
by the methods shown in ref. [3]. The result can be 
expressed as 

1 cos(v/~Xo ) 9(x, ylxo,Yo) = .=,~ 

× cos(x/~x) cosh(x/~y <)e- .F~>,  (24) 

where 

~ ,  Y>Yo ~ ,  Y<Yo 
y >  = y < =  . (25) 

o, Y<Yo o, Y>Yo 

The eigenvalues 2. in equation (24) are determined by 
the transcendental equation 

x/~ .  tan x/~.  = ~l, n = 1,2 . . . .  (26) 

and the normalizing constant is given by 

1 ( sin x/~.) 2 
iV. = ~ + 2Ctl (27) 

An integral representation of U(4, r/) which satisfies 
equations (15)-(17) is given by 

fh/Lf ,  U(4, t/) = G(~, t/[~0, r/0)q d~0 dq0 
do do 

ff L 0 U 
+ G(4,,110,,lo)~-~ (0, no) d'10 (28) 

where G(4, r/l¢0, r/o) is the solution of the Green's func- 
tion problem, 

o-~,7~/G(4, ,if 4o, ,7o) = - 6 ( 4 -  4o)6(,7-,~o), 

h 
0 < 4 < 1 ,  O < q < ~  (29) 
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~ '. (0, nl Go, no) = 0, 

- ~ ( 1 , n l G n o )  = -a:G(1,nl~o,no), (30) 

h 

~i(,LO1¢o,,7o1 = o, 

d-~G(¢,~i¢0,t/0)=0, 0~<¢~< 1. (31) 

As before, the solution of equations (29)-(31) can be 
determined by the methods shown in ref. [3]. The 
result can be expressed as 

{nxLrlo" ~ fmtLrf~ 
: e,,(¢:i,:o) cos t - 7 ) c o s  ) 

where 

Go(~l~0) = + [ 1  +cq(1-~>)] 

2 , fnnL~<'~ ; cosn t--W-- ) 

× {D. cosh/'nnL~>\ 

n =: 1, 2, . . . .  

Here ~> and ~< are defined analogously to equation 
(25). 

The expressions for u(x,y)  and U({, t/) given by 
equations (19) and (28), respectively, are not fully 
determined because of the unknown quantities which 
appear in the integrands. The determination of these 
unknown quantities is achieved by imposing equation 
(18). It follows from equations (18) and (19) that 

fo h/1 
u(x, y)  = g(x ,  .vl 1, Yo) 

F 8U[  lyo'~ f lyo\q 

In equation (28), the fact that q is constant leads to 

U(~,q) = q + ~(1 -~  2) 

h/L 8U 
--fl  G(~'q°)-~ (0't/°ldr/°' (351 

Since our interest is only in the temperature at the 
tip of the interface between the body and the ther- 
mocouple, we will confine our analysis of equations 
(34) and (35) to the determination of U(0, 0). To facili- 
tate the finding of U(0, 0), we utilize that the geometry 
of the model implies that 

l h 
Z << 1, Z << 1, (36) 

and retain only the leading order contributions from 
the integrals in equations (34) and (35). It follows 
from equations (18) and (34) that 

U(O,0) = u(1,O) = g(1,OIl,yo) 
(32) 

[- OU/ lyo\ 

x g(1,OIl,yo)dyo 

= [ f l ~ ( 0 , 0 )  +~, U(0,0)? 

x ~ COS2 x//~(1--e-(-fi~h/o~ (37) 
. 2 ,  ~ . w . \  / 

while equations (35) yields 

(33) 
- -ql  

q--- 1 az OU 

~h/L 
x J0 G(0,010,r/o) dr/o 

- ~ q  1 c~U 1 
-0%(  + 2 ) -  [ ~ -  (0'0)1(1 + ~)"  

(34) (38) 

Solving equations (37)-(38) for U(0, 0) by elimination 
of aU/8~(O, 0) gives 
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U(O, O) = 12 

flq(l+2)~=, c°s2~/~ ~1 --e -(,/~.h/:)) 

cos z ~ /  _e-( , /~  h/,>)" 
1 + :¢2 + [fla2--a, (1 + ct2)]._~ 2,N,--~l 

/ 

(39) 
Thus, equation (39) provides the approximate 

behavior of temperature at the tip of the thermocouple, 
under the assumptions of equation (36). Additional 
simplification of the form of equation (39) results from 
the very realistic assumption that the thermocouple 
guard is sufficiently thin so that 

a l l  
cq = ~ << 1. (40) 

Under this additional assumption, it follows from 
equations (26) and (27) that 

21.~cq, 2,~(n-l)n+ (n_l)n, n = 2 , 3  . . . . .  

1 ]- ~, 7 2 
N , ~ I ,  N , ~ + | ~ J , [ _ ( n _ l ) n /  n = 2 , 3  . . . . .  (41) 

This implies that the series in equation (39) can be 
rather well approximated by its leading term when 
equation (40) holds. Then equation (39) can be 
replaced by 

10 ~ =  20 I~= 1 

S -  
Z-- 
g-6 

2 

B = I  
I I I I I 

0.2 0.4 0.6 0.8 1.0 
l 

Fig. 3. Tip temperature dependence on guard thickness 
[equation (47)]. 
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Fig. 4. Tip temperature dependence on guard thickness 

[equation (47)]. 

U(0, O) 

( ) ~1 (1 + ~z) + [fl~2 - cq (1 + a2)] 1 - e -(-H,h/° 

(42) 

4. T I P  T E M P E R A T U R E  B E H A V I O R  

Let us recall that the motivation for deriving an 
expression for U(0,0) was to determine how sen- 
sitively the temperature at the tip of the thermocouple 
depends upon the thickness l of the metal guard. To 
examine this relationship, we convert equation (42) 
back into an equivalent dimensional form through 
equations (9) and (10). It follows that 

T2(t,0) = To+ 
(1 + B ) +  ( ~ -  1 - B ) ( 1 - e  - °'/d-° ) 

(43) 

where 

k2QL~lkl ' ~2L A - B = ~ -  2 , #=h . (44) 

This expression, equation (43), for the dimensional 
tip temperature T(I, 0) indicates the explicit depen- 
dence on the thickness l. Differentiation of equation 
(43) with respect to l yields 

~Z (l, O) = 

- -  2 "  21312E l+,,+  l ,)(l e 

(45) 

Since this derivative is negative, then T2(/, 0) is a mon- 
otonically decreasing function of l. Moreover, the 
derivative vanishes at the extreme values, 1 = 0 and 
l ~ ~ ,  so that T2(L 0) will be most sensitive to changes 
in 1 at some intermediate value l*. That value of 
maximum sensitivity corresponds to the inflection 
point found by differentiation of equation (45). It 
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follows that l* is determined by the transcendental 
equation 

6 ~21 x / ~  + 3x /~ ) -  l 

(~1 ) ( # ) ( 4 6 )  =022-  022_1_B exp - 
021 

A special case of some interest is that in which the 
convection coefficients for the body and the ther- 
mocouple can be regarded as equal. If & = ~ = ~2, 
then equation (43) becomes 

7"2 (l, 0) = 7; + (47) 
1 + Be -o/Jo 

To illustrate the potential sensitivity of the tip tem- 
perature to the thickness of the metal guard, we have 
graphically displayed the behavior of equation (47) in 
Figs. 3 and 4 for a .selection of values of the parameters 
~ and B. It is seen that greater sensitivity is associated 

with larger values of B, with the most sensitive guard 
thickness l* being relatively small. 

Our conclusion from the analysis of the math- 
ematical model presented here is that the tip tem- 
perature of the thermocouple can be extremely sen- 
sitive to the thickness of a thin metal guard during 
microwave heating. These results imply a qualitative 
confirmation of the thesis proposed in ref. [2]. Further 
experimental studies are being planned in which some 
quantitative comparison can be made with the theory 
developed here. 
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